Chapter 06

Boolean Algebra and Logic Circuits

Computer fundamentals - Pradeep K. Sinha \& Pirili Sinha

Learning Objectives

In this chapter you will learn about:

B Boolean algebra
B Fundamental concepts and basic laws of Boolean algebra
B Boolean function and minimization
B Logic gates
B Logic circuits and Boolean expressions
B Combinational circuits and design

Computier Fundamentals. Pradeep K. Sinha \& Priti Sinha-

Boolears Algeta

B An algebra that deals with binary number system
ß George Boole (1815-1864), an English mathematician, developed it for:
\& Simplifying representation
\& Manipulation of propositional logic
B In 1938, Claude E. Shannon proposed using Boolean algebra in design of relay switching circuits
B Provides economical and straightforward approach
B Used extensively in designing electronic circuits used in computers

Computer Fundamentals! Pradeep K. Sinha \& Priti Sinhar
Fundanental Concepis of Boolean Algérs

B Use of Binary Digit
\AA Boolean equations can have either of two possible values, 0 and 1
B Logical Addition
B Symbol ' + ', also known as 'OR' operator, used for logical addition. Follows law of binary addition
B Logical Multiplication
ß Symbol '.', also known as 'AND' operator, used for logical multiplication. Follows law of binary multiplication
B Complementation
B Symbol '-', also known as 'NOT' operator, used for complementation. Follows law of binary compliment

Operator precedence

B Each operator has a precedence level
B Higher the operator's precedence level, earlier it is evaluated
B Expression is scanned from left to right
B First, expressions enclosed within parentheses are evaluated
B Then, all complement (NOT) operations are performed
B Then, all ' ${ }^{\prime}$ ' (AND) operations are performed
B Finally, all ' + ' (OR) operations are performed

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Operator precedence

(Continued from previous slide..)

postulates or Boolean Algeter

Postulate 1:

(a) $A=0$, if and only if, A is not equal to 1
(b) $A=1$, if and only if, A is not equal to 0

Postulate 2:

(a) $x+0=x$
(b) $x \cdot 1=x$

Postulate 3: Commutative Law

(a) $x+y=y+x$
(b) $x \cdot y=y \cdot x$

Postulates of Boolean Algets

(Continued from previous slide
Postulate 4: Associative Law
(a) $x+(y+z)=(x+y)+z$
(b) $x \cdot(y \cdot z)=(x \cdot y) \cdot z$

Postulate 5: Distributive Law

(a) $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
(b) $x+(y \cdot z)=(x+y) \cdot(x+z)$

Postulate 6:

(a) $x+\bar{x}=1$
(b) $x \cdot \bar{x}=0$

The Princtiple of Dujlity

There is a precise duality between the operators . (AND) and + (OR), and the digits 0 and 1.

For example, in the table below, the second row is obtained from the first row and vice versa simply by interchanging ' + ' with '.' and ' 0 ' with ' 1 '

	Column 1	Column 2	Column 3
Row 1	$1+1=1$	$1+0=0+1=1$	$0+0=0$
Row 2	$0 \cdot 0=0$	$0 \cdot 1=1 \cdot 0=0$	$1 \cdot 1=1$

Therefore, if a particular theorem is proved, its dual theorem automatically holds and need not be proved separately

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
Some Important fheorems of Eoolean Algetora

Sr. No.	Theorems/ I dentities	Dual Theorems/ I dentities	Name (if any)
1	$x+x=x$	$x \cdot x=x$	Idempotent Law
2	$x+1=1$	$x \cdot 0=0$	Absorption Law
3	$x+x \cdot y=x$	$x \cdot x+y=x$	Involution Law
4	$\overline{\bar{x}}=x$	$\bar{x} \cdot \mathrm{y}=\bar{x} \bar{y}+$	De Morgan's Law
5	$x \cdot \bar{x}+y=x \cdot y$	$x+\bar{x} \cdot y=x+y$	
6	$\overline{x+y}=\bar{x} \bar{y} \cdot$		

Methods of proving Theorens

The theorems of Boolean algebra may be proved by using one of the following methods:

1. By using postulates to show that L.H.S. $=$ R.H.S
2. By Perfect Induction or Exhaustive Enumeration method where all possible combinations of variables involved in L.H.S. and R.H.S. are checked to yield identical results
3. By the Principle of Duality where the dual of an already proved theorem is derived from the proof of its corresponding pair

Proving a Theorem by Using Postulates (Esas』ple)

Theorem:

$$
x+x \cdot y=x
$$

Proof:
L.H.S.

$$
\begin{array}{ll}
=x+x \cdot y & \\
=x \cdot 1+x \cdot y & \\
=x \cdot(1+y) & \\
=x \cdot(y+1) & \\
=x \cdot 1 & \\
=x & \\
=x \text { by postulate } 2(b) \\
=\text { R.H.S. } &
\end{array}
$$

Proving a fheorem by Perfect Incuction

(Exancle)

Theorem:

$$
x+x \cdot y=x
$$

$l \mid$ \mathbf{x}	\mathbf{y}	$\mathbf{x} \cdot \mathbf{y}$	$\mathbf{x}+\mathbf{x} \cdot \mathbf{y}$
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

proving a Theorem dy the

Theorem:

$$
x+x=x
$$

Proof:
L.H.S.
$=x+x$
$=(x+x) \cdot 1 \quad$ by postulate $2(b)$
$=(x+x) \cdot(x+\bar{X}) \quad$ by postulate 6(a)
$=x+x \cdot \bar{x} \quad$ by postulate $5(b)$
$=x+0$
by postulate 6(b)
by postulate 2(a)
$=$ R.H.S.

Proving a fheorem by the
 Psinciple of DゆコJivy (Exassple)

(Continued from previous slide..)

Dual Theorem:

$$
x \cdot x=x
$$

Proof:

> L.H.S. $=x \cdot x$ $=x \cdot x+0$ $=x \cdot x+x \cdot \bar{x}$ $=x \cdot(x+\bar{x})$ $=x \cdot 1$ $=x$ $=$ R.H.S.
$=x \cdot x+0 \quad$ by postulate $2(a) \quad$ Notice that each step of by postulate 6(b) the proof of the dual by postulate 5(a) by postulate 6(a) theorem is derived from
by postulate 2(b) the proof of its corresponding pair in the original theorem

Computer Fundamentals! Pradeep K. Smina \& Priti Sinhar

Boolean functions

BA Boolean function is an expression formed with:
B Binary variables
B Operators (OR, AND, and NOT)
B Parentheses, and equal sign
β The value of a Boolean function can be either 0 or 1
B A Boolean function may be represented as:
B An algebraic expression, or
B A truth table

Representationas an

Algebraic Expression

$$
W=X+\bar{Y} \cdot Z
$$

B Variable W is a function of X, Y, and Z, can also be written as $W=f(X, Y, Z)$

B The RHS of the equation is called an expression
B The symbols X, Y, Z are the literals of the function
ß For a given Boolean function, there may be more than one algebraic expressions

Representaion as a fruit Foble

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{w}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Representation as a Truth Table

(Continued from previous slide..)
B The number of rows in the table is equal to 2^{n}, where n is the number of literals in the function

B The combinations of $0 s$ and 1 s for rows of this table are obtained from the binary numbers by counting from 0 to $2^{\mathrm{n}}-1$

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
Minjnfzation of Boolean Functions

B Minimization of Boolean functions deals with
B Reduction in number of literals
B Reduction in number of terms

B Minimization is achieved through manipulating expression to obtain equal and simpler expression(s) (having fewer literals and/or terms)

Minnivetion of Boolean Functions

(Continued from previous slide..)

$$
F_{1}=\bar{x} \cdot \bar{y} \cdot z+\bar{x} \cdot y \cdot z+x \cdot \bar{y}
$$

F_{1} has 3 literals (x, y, z) and 3 terms
$F_{2}=x \cdot \bar{y}+\bar{x} \cdot z$
F_{2} has 3 literals (x, y, z) and 2 terms
F_{2} can be realized with fewer electronic components, resulting in a cheaper circuit

Minjufzation of exoolean functions

(Continued from previous slide..)

\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{F}_{\mathbf{1}}$	$\mathbf{F}_{\mathbf{2}}$
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

Both F_{1} and F_{2} produce the same result

Try out some Boolean Function

Dinnimization

(a) $\mathrm{x}+\overline{\mathrm{x}} \cdot \mathrm{y}$
(b) $x \cdot(\bar{x}+y)$
(c) $\overline{\mathrm{x}} \cdot \overline{\mathrm{y}} \cdot \mathrm{z}+\overline{\mathrm{x}} \cdot \mathrm{y} \cdot \mathrm{z}+\mathrm{x} \cdot \overline{\mathrm{y}}$
(d) $x \cdot y+\bar{x} \cdot z+y \cdot z$
(e) $(x+y) \cdot(\bar{x}+z) \cdot(y+z)$

Conplemsent of a Boolean function

B The complement of a Boolean function is obtained by interchanging:

B Operators OR and AND
B Complementing each literal
B This is based on De Morgan's theorems, whose general form is:

$$
\begin{aligned}
& \overline{\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}+\ldots+\mathrm{A}_{n}}=\overline{\mathrm{A}}_{1} \cdot \overline{\mathrm{~A}}_{2} \cdot \overline{\mathrm{~A}}_{3} \cdot \ldots \cdot \overline{\mathrm{~A}}_{n} \\
& \overline{\mathrm{~A}_{1} \cdot \mathrm{~A}_{2} \cdot \mathrm{~A}_{3} \cdot \ldots \cdot \mathrm{~A}_{n}}=\overline{\mathrm{A}}_{1}+\overline{\mathrm{A}}_{2}+\overline{\mathrm{A}}_{3}+\ldots+\overline{\mathrm{A}}_{n}
\end{aligned}
$$

Complementing aboolean Function (Example)

$$
F_{1}=\bar{x} \cdot y \cdot \bar{z}+\bar{x} \cdot \bar{y} \cdot z
$$

To obtain \bar{F}_{1}, we first interchange the OR and the AND operators giving

$$
(\bar{x}+y+\bar{z}) \cdot(\bar{x}+\bar{y}+z)
$$

Now we complement each literal giving
$\overline{F_{1}}=(x+\bar{y}+z) \cdot(x+y+\bar{z})$

Canonical fornes of Bioolean functions

Minterms : n variables forming an AND term, with each variable being primed or unprimed, provide 2^{n} possible combinations called minterms or standard products

Maxterms : n variables forming an OR term, with each variable being primed or unprimed, provide 2^{n} possible combinations called maxterms or standard sums

Minterms and Maxterms for three Varbebles

Variables		Minterms		Maxterms		
x	y	z	Term	Designation	Term	Designation
0	0	0	$\overline{\mathrm{x}} \cdot \overline{\mathrm{y}} \cdot \overline{\mathrm{z}}$	m_{0}	$\mathrm{x}+\mathrm{y}+\mathrm{z}$	M_{0}
0	0	1	$\overline{\mathrm{x}} \cdot \overline{\mathrm{y}} \cdot \mathrm{z}$	m_{1}	$\mathrm{x}+\mathrm{y}+\overline{\mathrm{z}}$	M_{1}
0	1	0	$\overline{\mathrm{x}} \cdot \mathrm{y} \cdot \overline{\mathrm{z}}$	m_{2}	$\mathrm{x}+\overline{\mathrm{y}}+\mathrm{z}$	M_{2}
0	1	1	$\overline{\mathrm{x}} \cdot \mathrm{y} \cdot \mathrm{z}$	m_{3}	$\mathrm{x}+\overline{\mathrm{y}}+\overline{\mathrm{z}}$	M_{3}
1	0	0	$\mathrm{x} \cdot \overline{\mathrm{y}} \cdot \overline{\mathrm{z}}$	m_{4}	$\overline{\mathrm{x}}+\mathrm{y}+\mathrm{z}$	M_{4}
1	0	1	$\mathrm{x} \cdot \overline{\mathrm{y}} \cdot \mathrm{z}$	m_{5}	$\overline{\mathrm{x}}+\mathrm{y}+\overline{\mathrm{z}}$	M_{5}
1	1	0	$\mathrm{x} \cdot \mathrm{y} \cdot \overline{\mathrm{z}}$	m_{6}	$\overline{\mathrm{x}}+\overline{\mathrm{y}}+\mathrm{z}$	M_{6}
1	1	1	$\mathrm{x} \cdot \mathrm{y} \cdot \mathrm{z}$	m_{7}	$\overline{\mathrm{x}}+\overline{\mathrm{y}}+\overline{\mathrm{z}}$	M_{7}

Note that each minterm is the complement of its corresponding maxterm and vice-versa

Sun-offlproducts (SOP) Expression

A sum-of-products (SOP) expression is a product term (minterm) or several product terms (minterms) logically added (ORed) together. Examples are:
X

$$
x+y
$$

$x+y \cdot z$
$x \cdot y+z$
$x \cdot \bar{y}+\bar{x} \cdot y$
$\bar{x} \cdot \bar{y}+x \cdot \bar{y} \cdot z$

Steps to Express a Buolean Function

1ヶ 」

1. Construct a truth table for the given Boolean function
2. Form a minterm for each combination of the variables, which produces a 1 in the function
3. The desired expression is the sum (OR) of all the minterms obtained in Step 2

Expressing a function in jes

x	y	z	F_{1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

The following 3 combinations of the variables produce a 1 : 001, 100, and 111

Expressing a Function in jes

(Continued from previous slide..)
B Their corresponding minterms are:

$$
\bar{x} \cdot \bar{y} \cdot z, \quad x \cdot \bar{y} \cdot \bar{z}, \quad \text { and } \quad x \cdot y \cdot z
$$

B Taking the OR of these minterms, we get

$$
\begin{aligned}
& \mathrm{F}_{1}=\overline{\mathrm{x}} \cdot \overline{\mathrm{y}} \cdot \mathrm{z}+\mathrm{x} \cdot \overline{\mathrm{y}} \cdot \overline{\mathrm{z}}+\mathrm{x} \cdot \mathrm{y} \cdot \mathrm{z}=\mathrm{m}_{1}+\mathrm{m}_{4}+\mathrm{m}_{7} \\
& \mathrm{~F}_{1}(\mathrm{x} \cdot \mathrm{y} \cdot \mathrm{z})=\sum(1,4,7)
\end{aligned}
$$

Productoof Sunns (pos) Expression

A product-of-sums (POS) expression is a sum term (maxterm) or several sum terms (maxterms) logically multiplied (ANDed) together. Examples are:

$$
\begin{array}{ll}
x & (x+\bar{y}) \cdot(\bar{x}+y) \cdot(\bar{x}+\bar{y}) \\
\bar{x}+y & (x+y) \cdot(\bar{x}+y+z) \\
(\bar{x}+\bar{y}) \cdot z & (\bar{x}+y) \cdot(x+\bar{y})
\end{array}
$$

Steps to Express a Boolean Function

in jis Productofisunas forms
1．Construct a truth table for the given Boolean function
2．Form a maxterm for each combination of the variables， which produces a 0 in the function

3．The desired expression is the product（AND）of all the maxterms obtained in Step 2

Computer Fundamentals！Pradeep K．Sinna \＆Priti Sinha

Expressing a Function in jes

Productiof゙－ごussE デ0ヶss

x	y	z	F_{1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

ß The following 5 combinations of variables produce a 0 ： 000，010，011，101，and 110

B Their corresponding maxterms are:

$$
\begin{aligned}
& (x+y+z),(x+\bar{y}+z),(x+\bar{y}+\bar{z}), \\
& (\bar{x}+y+\bar{z}) \text { and }(\bar{x}+\bar{y}+z)
\end{aligned}
$$

B Taking the AND of these maxterms, we get:

$$
\begin{aligned}
& F_{1}=(x+y+z) \cdot(x+\bar{y}+z) \cdot(x+\bar{y}+\bar{z}) \cdot(\bar{x}+y+\bar{z}) . \\
& \quad(\bar{x}+\bar{y}+z)=M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{5} \cdot M_{6} \\
& F_{1}(x, y, z)=\Pi(0,2,3,5,6)
\end{aligned}
$$

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Conversjon Bebjeen Canonjeal fornss (Junn-oj゙-

To convert from one canonical form to another, interchange the symbol and list those numbers missing from the original form.

Example:

$$
\begin{aligned}
& F(x, y, z)=\Pi(0,2,4,5)=\Sigma(1,3,6,7) \\
& F(x, y, z)=\Pi(1,4,7)=\Sigma(0,2,3,5,6)
\end{aligned}
$$

Logic Gates

B Logic gates are electronic circuits that operate on one or more input signals to produce standard output signal

B Are the building blocks of all the circuits in a computer

B Some of the most basic and useful logic gates are AND, OR, NOT, NAND and NOR gates

AND Gate

B Physical realization of logical multiplication (AND) operation

B Generates an output signal of 1 only if all input signals are also 1

AND Gate (Block Diagram Symbol
and Truth Taigle)

Inputs		Output
A	B	$\mathrm{C}=\mathrm{A} \cdot \mathrm{B}$
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

B Physical realization of logical addition (OR) operation
B Generates an output signal of 1 if at least one of the input signals is also 1

Ois Gate (Block Diagrans Symbol

Inputs		Output
A	B	$\mathrm{C}=\mathrm{A}+\mathrm{B}$
0	0	0
0	1	1
1	0	1
1	1	1

NOT Gate

B Physical realization of complementation operation
B Generates an output signal, which is the reverse of the input signal

NOT Gate (Block Diagram Symbol

and Truth (Jable)

Input	Output
A	$\overline{\mathrm{A}}$
0	1
1	0

NAND GETE

B Complemented AND gate
B Generates an output signal of:

B 1 if any one of the inputs is a 0
B 0 when all the inputs are 1

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
NAND Gate (Block Diagram Symbol

Inputs		Output
A	B	$\mathrm{C}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate

B Complemented OR gate
B Generates an output signal of:

B 1 only when all inputs are 0
B 0 if any one of inputs is a 1

```
NOR Gate (Block Djagrass Syssbol
```


Inputs		Output
A	B	$\mathrm{C}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$
0	0	1
0	1	0
1	0	0
1	1	0

Logic Cjrcijis

B When logic gates are interconnected to form a gating / logic network, it is known as a combinational logic circuit

B The Boolean algebra expression for a given logic circuit can be derived by systematically progressing from input to output on the gates

B The three logic gates (AND, OR, and NOT) are logically complete because any Boolean expression can be realized as a logic circuit using only these three gates

Finding Boolean Expression
of̈ a Logic Cirsulit (Esansple 1)

Finding Boolean Expression of a Logjc Cirsulit (Example 2)


```
Boolean Expression = A B +C
```


Constructing a Logic Circuit from a Boolean
Expression (Esanple 2)

$$
\text { Boolean Expression }=\overline{\mathrm{A} \cdot \mathrm{~B}}+\mathrm{C} \cdot \mathrm{D}+\overline{\mathrm{E} \cdot \mathrm{~F}}
$$

UnJVersej Mand Gate

B NAND gate is an universal gate, it is alone sufficient to implement any Boolean expression
B To understand this, consider:
B Basic logic gates (AND, OR, and NOT) are logically complete

B Sufficient to show that AND, OR, and NOT gates can be implemented with NAND gates

Inplenentation of NOT, AND ans OB Gares by NAND Gates

(a) NOT gate implementation.

(b) AND gate implementation.

Implementation of NOT, AND and OR Gares by

 NAND Gaies(Continued from previous slide..)

(c) OR gate implementation.

Nethod of Jmplementing a E'oolean Expression Wifi Only NAND Gates

Step 1: From the given algebraic expression, draw the logic diagram with AND, OR, and NOT gates. Assume that both the normal (A) and complement ($\overline{\mathrm{A}}$) inputs are available

Step 2: Draw a second logic diagram with the equivalent NAND logic substituted for each AND, OR, and NOT gate

Step 3: Remove all pairs of cascaded inverters from the diagram as double inversion does not perform any logical function. Also remove inverters connected to single external inputs and complement the corresponding input variable

$$
\text { Boolean Expression }=A \cdot \bar{B}+C \cdot(A+B \cdot D)
$$

(a) Step 1: AND/OR implementation

Jmplementing aboolean Expressionwhin Only NAND Gates (Exancple)

(Continued from previous slide..)

(b) Step 2: Substituting equivalent NAND functions
(Continued on next slide)
(Continued from previous slide..)

(c) Step 3: NAND implementation.

Universal Nom Gate

B NOR gate is an universal gate, it is alone sufficient to implement any Boolean expression

B To understand this, consider:
B Basic logic gates (AND, OR, and NOT) are logically complete

B Sufficient to show that AND, OR, and NOT gates can be implemented with NOR gates

Inplementation of NOTS, OR and AND Gares by NOR Gates

(a) NOT gate implementation.

(b) OR gate implementation.

Insplensentation of NOT, OR and ANID GEres by

 NOR Gates(Continued from previous slide..)

Computier Fundamentals: Pradeep K. Sinha \& Priti Sinhar

Nethod of Jmplementing a B'oolean Expression with Only JOi Gates

Step 1: For the given algebraic expression, draw the logic diagram with AND, OR, and NOT gates. Assume that both the normal (A) and complement $(\overline{\mathrm{A}})$ inputs are available

Step 2: Draw a second logic diagram with equivalent NOR logic substituted for each AND, OR, and NOT gate

Step 3: Remove all parts of cascaded inverters from the diagram as double inversion does not perform any logical function. Also remove inverters connected to single external inputs and complement the corresponding input variable

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
Jmplementing a Boolean Expressjonwicin OnJy NOR Gates (Esausples)
(Continued from previous slide..)
Boolean Expression $A \cdot \bar{B}+C \cdot(A+B \cdot D)$

(a) Step 1: AND/OR implementation.

Computer Fundamentals! Pradeep K. Sinha \& Priti Sinhar
Jmplementing a Boolean Expressjonnuin OnJy NOR GコLes (Exansples)
(Continued from previous slide..)

(c) Step 3: NOR implementation.

Exclusive-orsunction

$A \oplus B=A \cdot \bar{B}+\bar{A} \cdot B$

Also, $(A \oplus B) \oplus C=A \oplus(B \oplus C)=A \oplus B \oplus C$

Exclusive-orstunction (Truth foble)

(Continued from previous slide..)

Inputs		Output
A	B	$\mathrm{C}=\mathrm{A} \oplus \mathrm{B}$
0	0	0
0	1	1
1	0	1
1	1	0

$A \ddot{A} B=A \cdot B+\bar{A} \cdot \bar{B}$

Also, $(A \ddot{A} B) \hat{A}=A \ddot{A}(B \ddot{A} C)=A \ddot{A} B A ̈ C$

Eguivalence-rusction (fruthrable)

Inputs		Output
A	B	C = A Ä B
0	0	1
0	1	0
1	0	0
1	1	1

Steps in Designimg Gombinational Ciremits

1. State the given problem completely and exactly
2. Interpret the problem and determine the available input variables and required output variables
3. Assign a letter symbol to each input and output variables
4. Design the truth table that defines the required relations between inputs and outputs
5. Obtain the simplified Boolean function for each output
6. Draw the logic circuit diagram to implement the Boolean function

Designing a Comojnaijonal Circuis Example 1 - flajfradser Desjoss

Inputs		Outputs	
A	B	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$\left.\begin{array}{l}S=\bar{A} \cdot B+A \cdot \bar{B} \\ C=A \cdot B\end{array}\right\}$ Boolean functions for the two outputs.

Logic circuit diagram to implement the Boolean functions

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
Designing a Combinational Circuit

Inputs			Outputs	
A	B	D	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Truth table for a full adder

Designing a Combinational Circuit

Example 2 - Full-Adder Design
(Continued from previous slide..)

Boolean functions for the two outputs:

$$
\begin{aligned}
S & =\bar{A} \cdot \bar{B} \cdot D+\bar{A} \cdot B \cdot \bar{D}+A \cdot \bar{B} \cdot \bar{D}+A \cdot B \cdot D \\
C & =\bar{A} \cdot B \cdot D+A \cdot \bar{B} \cdot D+A \cdot B \cdot \bar{D}+A \cdot B \cdot D \\
& =A \cdot B+A \cdot D+B \cdot D \quad(\text { when simplified })
\end{aligned}
$$

Compuier Fundamentals! Prodeep K. Sinha \&q Prifi Sinhar
Designing a Combjnational Circuis
Exanfple 2 - F!
(Continued from previous slide..)

(a) Logic circuit diagram for sums

Designing a Combinational Circuit Example 2 - Full-Adder Design

(Continued from previous slide..)

(b) Logic circuit diagram for carry
Ref. Page 95 Chapter 6: Boolean Algebra and Logic Circuits \quad Slide 77/78

B Absorption law
B AND gate
B Associative law
B Boolean algebra
B Boolean expression
B Boolean functions
B Boolean identities
B Canonical forms for Boolean functions
B Combination logic circuits
B Cumulative law
B Complement of a function
B Complementation
B De Morgan's law
B Distributive law
B Dual identities

B Equivalence function
B Exclusive-OR function
B Exhaustive enumeration method
B Half-adder
B Idempotent law
B Involution law
B Literal
B Logic circuits
B Logic gates
B Logical addition
B Logical multiplication
B Maxterms
B Minimization of Boolean
functions
B Minterms
B NAND gate

B NOT gate
B Operator precedence
B OR gate
B Parallel Binary Adder
B Perfect induction method
B Postulates of Boolean algebra
B Principle of duality
B Product-of-Sums expression
B Standard forms
B Sum-of Products expression
B Truth table
B Universal NAND gate
B Universal NOR gate

